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ON THE INFLUENCE OF THE SURFACE AND BODY TIDES

ON THE MOTION OF A SATELLITE

INTRODUCTION

In the present article we investigate some geophysical aspects of the tidal

perturbations in the motion of artificial satellites and develop a system of formulas

convenient for computation of the tidal effects in the elements using a step-by-

step numerical integration.

Recently the tidal perturbations in the motion of artificial satellites captured

the imagination of theoreticians and observers. The significance of these pertur-

bations lies in the fact that they are intimately connected with the elastic properties

of the Earth and with the distribution of density inside the Earth. Thus, the

comparison between the observed and computed tidal perturbations of the satellite

permits one to obtain information about the average elastic properties of the

Earth and to check the assumed model of the Earth.

The attraction of the Earth by the Moon and the Sun produces elastic dis-

placements inside the Earth body (bodily tides) and the tidal buldge on its surface

(surface tides). The result is a small change in the distribution of mass and,

consequently, small variations in the exterior geopotential. These variations

constitute the exterior perturbing tidal potential, and they produce the perturba-

tions in the motion of an artificial satellite.



The tidal perturbations in the motion of the satellite are not the result of the

gravitational attraction by the surface buldge only. The bodily tides contribute

their share of influence (approximately 40%).

The exterior tidal potential can be expanded into a series of products of

spherical harmonics. The first factor in each product is a polynomial in the

components of the unit vector directed from the center of the Earth toward the

Moon (the Sun). The second factor, of the same degree and order as the first,

is a similar polynomial in the components of the unit vector directed toward

the satellite. This form of the tidal potential is convenient for the computation

of perturbations by means of numerical step by step integration. If we prefer

an analytical expansion, then, to facilitate the integration, the products of

spherical harmonics are expanded into Fourier series with arguments which

are linear combinations of the argumentst, 4', F, D and F of the lunar theory

and of the mean angular elements of the satellite (Musen and Estes, 1971). All

these arguments are either linear or nearly linear in time and, consequently,

the integration in analytical form does not present any difficulty. The program

for manipulating the Fourier series which appear in the theory of tidal perturba-

tions was developed by C. Hipkins and R. Estes of BTS Company.

Each term of the Fourier expansion contains a factor, i.e. the Love number,

which represents a measure of the elastic response of the Earth to the given

tidal frequency. These numbers depend on the laws of change of Lame elastic
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parameters and the density inside the Earth, on the degree of the spherical

harmonics, and,to a lesser extent, on its order and on the frequency itself

(Alterman et al., 1959).

EXPANSION-OF THE EXTERIOR TIDAL POTENTIAL

The tidal oscillations of the point r" in the earth are governed by the partial

differential equation (Alterman et al., 1959):

a2s (1)

-t 2

where V is the del-operator relative to r", a- is the stress tensor

a- p(Vs + sV) + XIV- s, (2)

I is the idemfactor, g is the undisturbed acceleration of gravity, and 0 is the

sum of the direct tidal potential acting on r" and the potential due to the tidal

disturbance in the interior geopotential, as caused by the presence of elastic

displacements inside the Earth and on its surface. The density p and the Lame

elastic parameters, K and 4, are considered in the frame of the present work as

functions of v" = r"/R only, where R is the mean radius of the Earth. The po-

tential 0 satisfies Poisson's equation

V2,p = + 47nGV (ps). (3)

The particular solution of (3)

-G f (ps) dv, (4)

Jw Ir - r"l
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represents the exterior tidal potential acting on the satellite, where r is the

position vector of the satellite. The integral in (4) is taken over the volume

of the whole tidally disturbed Earth. In our approximation we assume that the

tidally undisturbed Earth is a sphere of the radius R and neglect the influence of

the Coriolis force. This assumption, however, must be removed in the investi-

gations about the response of the satellite to the tidal forces over a very long

interval of time. Under these assumptions the potential (4) represents the effects

of the body and surface "solid" Earth tides on the motion of the satellite. The

effects of the oceanic tides are not considered in the present paper.

We split the integral (4) into the sum of the integral over the volume of the

sphere r" = R and the integral over the surfaces of density discontinuities,

Q- G f V (ps) dv+G f p'sr "o dS, (5)

v I r - r"I s I r - r"I

where r"o is the unit vector in the direction of r",

dv = r"2dr"do",

dS =r" 2do-",

do-" = cos 8"dp"dk",

and /" is the latitude and k" the east longitude,and p' is the density discontinuity,

P' = p on the outer surface.

The first term in (5) represents the disturbing influence of the internal

elastic tidal displacements inside the Earth's body; the second term represents
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the perturbative influence of the tidal buldge. The displacement s, as given by

the differential equation (1), is a combination of the spheroidal and torsional

oscillations of the Earth.

In the investigations of the influence of tides on the motion of a satellite it

is convenient to represent the components of the spheroidal oscillations in the

form:

S47r m' in+

Snm(K) n m p {nm(v") Ynm(/", X") r"o
2n + 1 M n

(6)

+ r"Lnm(v") grad Ynm(", X")} ei(Kt+m). K m( )

This representation of snm differs in form only slightly from the corresponding

representation by Alterman et al (1959). In (6) m'/M is the ratio of the mass of

the Moon (Sun) to the mass of the Earth, and p' is the lunar (solar) parallactic

factor R/a', where a' is the mean distance of the Moon (Sun) from the Earth.

H,m (v") and Lnm (v") can be termed the generalized Love and Shida "numbers",

with v" = r"/R. They satisfy a system of ordinary differential equations (Alterman,

et al., 1959), (Takeuchi, 1950) which can be integrated only numerically. The

functions Ynm (,8", x") are the normalized spherical harmonics,

Y (", ")= 2n + 1 (n - ml)! P m(sin/ ") e+im" (7)
--4n (n + Iml) !
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Pm (x) = ( - ))" (1 - x2)m/ 2 d"+m(x 2 -

n! 2n dxn+m

with the normalization and orthogonality conditions

dx" Y n2 m(/", k") y* ',((", K") cos /3"d/P" c= )
-/2 nn mm

In spherical coordinates we have:

1 ay a (9)
VY + - e ,, + e

m + r" -l e, +r" cos p" h , e

where e3, and e,,, are the corresponding unit vectors. The factor Knm

exp i Kt+mOin (6) is inherited by Snm in (6) from the "lunar" ("solar") factors (a'/r')n

Yam (,8', X') in the expansion of the static tidal potential acting on each point of

the Earth. The partKtis a linear combination of t, t', F, D and F, and a is the

sidereal time. Besides (6) there is a second geophysically important solution

of (1). It is of the form

m_ 47 .m' Rpn+1W(") (r" x grad Y) e

2n + 1 M nm grad nm

and represents the torsional oscillations of the Earth (Alterman et al., 1959),
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Jeffreys (1967). However, it is not of any importance in our problem. Its radial

component is zero and, because "

div(Wnmr" x grad Ynm) = 0,

it does not produce any. dilatation. Consequently, it will not produce any dis-

turbances in the exterior geopotential at all, and will not influence the motion

of an artificial satellite. Thus, only the spheroidal oscillatidis of:tht"arth as

given by (6) can produce perturbations in the motionii bf a 'atellite. . -

The tidal potential (5) can be represented as a sum of particular tidal po-

tentials of the form:

V-(psm ) r dS. (10)
S - rIG dv + G r -r"IdS.

We have

(ps 1 dp r o . .s  + pV Snm(11)
R dv"

From the last equation, taking into account

r "o.VYnm = 0,

, 2 yn - _ n(n + 1)
nm.- r", nm

and (6), we obtain:
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4 - m n+ dH m 2H (12)
nm 2n + 1 M Ldv" v"

n(n + 1) Li Ynm(", k") ei(Kt+mO )

Substituting (12) into (11), expanding Ir" - r l' in terms of spherical harmonics,

and taking (6) into consideration we obtain:

4ir *Gm' (pp,)n+1 eiKt K (K)
nm(K) 2n + 1 R

(13)

Sk() (a)n+1 nm ('

and

k 2n+ "n+2Hnm( )  2 nm(2 v") dv' , (14)

where knm is the Love number. The summation symbol relates to the surfaces

of the density discontinuity and we set

(v") (") [H' (v") H (v")
Q""(,) 1Po1 +

(16)

n(n + 1) + d log p(v")
Lnm(v") + Hnm Iv d"

8



p is the parallactic factor R/a, and a is the semi-major axis of the satellite's

orbit, po is the mean density of the Earth. The numerical value of the first

term in (14) gives a general idea about the order of magnitude of the perturbing

by the tidal buldge alone. The value of the second term gives information about

the magnitude of the disturbing influence of bodily tides. In (13) all short period

terms depending on the Earth's rotation and involving the sidereal time have

disappeared automatically.

The most significant tidal perturbations in the motion of a satellite are those

of long period. We obtain the disturbing potentials Qn with long period terms

only, by averaging the expressions (13) over the orbit of the satellite. Thus:

Qnm Gm' (pp,)n+l k meiKtnm'

2n+ 1 R

where

Wnm f ( n+1 nm(8, a) dg (17)

and g is the mean anomaly of the satellite. The results of this averaging in

terms of the orbital elements of the satellite are given by several authors

(Kaula, 1969), (Kozai, 1965), (Newton, 1968), (Musen and Estes, 1972), (Musen

and Felsentreger, 1973) and therefore are omitted in the present exposition.

9



The differential equation (1) indicates the dependence of Love numbers knm

on the tidal frequency K.

The dependence of knm on n is much stronger than the dependence on m and

K. AS a consequence the satellite will have some "difficulties" distinguishing

between different knm for a given n. For this reason static model of the Earth

is being used at the present time in the computation of the tidal effects in the

motion of satellites and the dependence of Love numbers on the tidal frequencies

is suppressed.

At present the value k is used for all m and all K associated with the

Fourier expansions of

r Ynm(8', a') and ( Y*m(P', a').

in terms of the arguments{, f', F, D and f of the lunar theory. Under these

limitations, at the present time the disturbing function of the form

47rk Gk m ' + (13')
nm 2n + 1 R

( l Ynm (m, a),

is being used,
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and we deduce for the total-tidal potential

+O m
=

+n

ZC T nm' (18)
n=2 m= - n

by taking the addition theorem

m=+n

P4(cos S) 1 Y1 (', a') Ynm(, a.), (19)P n(COS S) - 72n a, (19)
m n 
m=-n

cos S = r.. r 0 ,

into consideration,

+CD

Gm' k(pp')n+ n+1 a+1 (20)
= k kn(Pp')n+ - n(cos S)

m=2

The expansion (20) is the standard one and presently serves as the basis for the

computation of the tidal perturbations in the motion of the artificial satellite as

caused by the tides of the "solid Earth".

However, with improved observational techniques and the use of satellite

altimetry the dependence of Love numbers on frequency must be considered

for accurate geoid determination from satellite observations. In the present

exposition we develop a set of differential equations for the long period tidal

perturbations in satellite elements in a foi'm suitable for numerical step-by-step
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integration. Having this goal in mind we re-write the disturbing function (13) as

nm 2n n2a2me iKt n+ (21)

where we set

nm(K) = pp' n+knm Km

and take the relation

GM = n2 a3

into account.

If for given n the Love numbers can be replaced by their average values,

then instead of (21) we can use the "combined" disturbing function (13'), which

we re-write in the form:

S(r) Y(8, a), (22)
nm 2n + Inanm a),

where

(an+1
Anm = (n-l- Ynm(S' a'),

(23)

n 
=  npi n+ lk .
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Representations (21) and (22) lead to a compact form of the differential equations

for the perturbations in elements.

We assume that the spherical harmonics Y (8, a), y* (8', a') are repre-
nm nm

sented as polynomials in the equatorial components

= cos 8 cos a, /L = cos 8 sin a, v = sin 8,

' = cos ' cos a', ' = cos 3' sin a', v' = sin 8'

of the unit-vectors ro and r'O, respectively.

DIFFERENTIAL EQUATIONS FOR THE VARIATION OF ELEMENTS

At the present time only the long period tidal perturbations in elements

can be easily observed. It is convenient to compute them by means of a

step-by-step numerical integration making use of the Gaussian form of the

differential equations for the variation of elliptic elements:

de e 2  1 2 r (24)_-- ae • -rTdg, (24)
dt n ae 27 fo a

d7 1 - 2  1 1 r+ - - S cos f + +- T sin dg
dt nae 27T e 2

(25)

+ 2 sin2 i d
2 dt
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dg 1 1 rS- "+ 127T r Z sin(f + w) dg, (26)
dt+ na/1- e2 sin i 2f a

di 1 1 r (27)
+ " 27Jo r Z cos(f + w) dg

d n a/1 - e2  27 a

dL 2 2 7  rjd1 r + e e d (e d

dt na 27T a 1 +/1 - e2  dt
(28)

+ 2V/1--e2 sin2 i d"
2 dt'

where

S = ro . F, T = no F, Z RF (29)

are the projections of the disturbing force

F v= V

on the directions

ro = P cos f + Q sin f, no = Rx ro - P sin f + Q cos f, and R, (30)

P, Q and R are the Gibbsian vectors associated with the instantaneous set of

elliptic elements. The values of the components S, T and Z are computed for

a set of points along the instantaneous orbit as defined by this set.
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We have:

V = ro 0  1 (I rro). (31)
Sr (I - 0 ,

where Vo0 is the del-operator relative to r 0 ,

Vo= i a + a + k

Making use of (21) we obtain for the disturbing forces

n+2

Fnm = V'nm 42n n2 am eiKt ( {-(n + 1) r + (I - r )-V nm (32)

We deduce from (24) - (28), (30) and (32) a set of formulas convenient for

programming:

de 4rn 1 iKt 2 B (33)

dt 2n+ 1 e 2  Bnm d,
0

dm + ei K t (34)
d-t 2n+ 1 e nm

1+A7T  
cos f + Bnm sin f df + 2 sin2  d

-+  1 e 2 dt
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dA 4mn 1 - eiKt

dt 2n + 1 (1 - e2 ) sin i

(35)

27r

di 47Tn 1 iKt

dt 2n + 1 1 - e e

(36)

277

2-' Cnm cos(f + 7 - A) df.

dL 4rn 2 i 1t f 2

- = +  ----- e *- Dm d f
dt 2n + 1 / 0 2 o

(37)

+ (e -e + 2-e 2 sin 2 i da;
1 + ' \-e2 t/ 2 dt'
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where we set for brevity:

((nAC (n 1) Y m

n-1

Bnm = nO Vo Ynm'

n-1

D (a y-

and nm nm

nO Vo = Rx rO -o

(vR - tRz) + (Rz - vRx)

+ (pR - XR ) -,

R- Vo=x + - +Rz= -

If instead of particular values of Love parameters kkm (K) we decide to use the

average value kn, which assumes knm (K) to be the same for a given n and for

all admissible m and K, then we can also use a more compact form of the

disturbing function:
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4n T -i a A' * a +1 (22)

where

A' (a' n+1 ym

(23)

q = M pnpn+ 'kn V pf nk

and the differential equations (33) - (37) become:

de 4r .n A* 1f 2 (33')
dt 2n + 1 e nm 2 nm (33')

d7r 47n 1 A (34')
dt 2n + 1 e nm

12rr 7 +A cos f + + Be) sin f df

i d 2 nm

+ 2 sin2 i d
2 dt'
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2-m- Ca sin(f + 7T - ) df,

di 47 n (36')
d - + 1 - A'* f - Cnm cos(f + 7T - A) df,

dL 4T 2n A' * 1 27F D (37')

dt 2n+1 - nm 2T nm

+ e e(e + 2V 1- e 2 sin2 i dT
1 + 1 -e 2  dt/ 2 dt

Conclusions

In expanding the exterior tidal potential in the present work we assumed

spherical symmetry of the Earth's elastic properties and density. The Love

number for a given frequency can be computed (Alterman et al., 1957) on the basis of

the assumed laws (from seismic evidence) of variation of Lame elastic parameters,

19



X and A, and of the density with depth. At the moment these hypotheses, commonly

used in the theory of oscillations of the Earth, seem to be plausible.

At the present time, however, an even more simplified model of the exterior

tidal potential, which is implicitly based on a static model of the Earth, is being

widely used in the computations of satellite tidal perturbations. In the frame of

this model the dependence of Love numbers on the order of the spherical har-

monics and frequency is supressed in the expansion of the tidal potential and

the same Love number is assigned to all spherical harmonics of the same degree.

With the accumulation of a long series of observations and a further im-

provement in observational techniques, consideration should be given to the

dependence of Love numbers on frequency, at least for the few most important

lunar and solar tidal constituents.

Only the investigations based on the use of an analytical (or semi-analytical)

theory can easily provide information on the significance of this dependence.

These investigations of the dependence of Love numbers on frequencies are

necessary in connection with the determination of an accurate geoid.

There are other un-resolved problems which await solution. The influence

of the core is one such problem. The speed of rotation of the core is different

from the speed of rotation of the mantle and crust.

As a consequence resonances and variability of amplitudes and phases

appear in the expansion of the tidal effects in the motion of a satellite. The

determination of lags of tidal constituents in the perturbations satellites will
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permit one to understand the process of dissipation of energy. The problem of the

influences of oceanic tides on satellite motion still is not solved numerically,

although it is satisfactorily understood theoretically. The numerical solution

of this problem is tied with the integration of the Laplace tidal differential

equations over the global ocean for different tidal constituents.

Our final conclusion is that in parallel with attempts to determine the

average elastic properties of the Earth from satellite observations it is neces-

sary to approach the problem from the geophysical side and integrate the dif-

ferential equations for Love parameters, at least for the most important tidal

frequencies in the motion of the satellite.

These are some problems which constitute topics for a long term future

work.
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